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ABSTRACT

Social translucence is a landmark theory in social computing.
Modeled on physical life, it guides designers toward elegant
social technologies. However, we argue that it breaks down
over modern social network sites because social networks
resist its physical metaphors. In this paper, we build theory
relating social translucence to social network structure. To
explore this idea, we built a tool called Link Different. Link
Different addresses a structural awareness problem by letting
users know how many of their Twitter followers already a
saw link via someone else they follow. During two months
on the web, nearly 150K people used the site a total of 1.3M
times. Its widespread, viral use suggests that people want
social translucence, but network structure gets in the way.
We conclude the paper by illustrating new design problems
that lie at the intersection of social translucence and other
unexplored network structures.
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INTRODUCTION

Social translucence [22] is a landmark theory in social com-
puting. In essence, it describes ways to build social technolo-
gies that support social life. Social translucence argues that
we should make online social behavior visible to facilitate
awareness, ultimately creating social spaces where we feel
accountable to one another. Erickson & Kellogg model the
theory on social processes we see in real, everyday life. For
example, they share a story where authors gather in a room
to arrange the chapters of an edited book ([22], pgs. 62-63).
It works because the room affords visibility: if I try to move
a chapter somewhere that upsets the book’s delicate balance,
you can intervene because you see me moving it. Typically,
we have to carefully design social media to afford what this
room affords effortlessly.
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Figure 1. A hypothetical room mirroring a social media triad.

Early social media resembled real-life places like this room.
Chat clients evoke conference rooms. Forums recall café
bulletin boards. However, today many of the internet’s most
popular sites (e.g., Facebook, Twitter, Google+) don’t look
like rooms at all. Rather, they revolve around the concept of
social networks. To illustrate, consider an ordinary group of
three people on Twitter. We’ve depicted their relationships in
Figure 1. A and C follow each other, and B follows C. Now,
picture the room you would have to build to mirror Twitter’s
constraints. You need to keep A and B separate, so you might
build a wall between them. B should see C, but not the other
way around, so put one-way glass between those two. At first
glance, it seems like you don’t need anything between A and
C, but you should keep them separate so A doesn’t wander
over, permitting B to see A.

This room is unlike anything you would find in everyday life.
And it’s just three people. What would it look like with four,
five or six? It becomes hard to imagine such a room. The
complexity grows so quickly because social networks disrupt
sight lines in complex ways. Consequently, the metaphors
around physical space so central to social translucence simply
break down in the context of social networks.

This paper aims to bridge the gap, offering a new way to think
about social translucence in the era of networks. We build
a theory relating specific structures within complex social
networks to the problems they cause for social translucence.
Using it, we work through an awareness problem arising
from one of these structures, the triad A < B — C. Here, A
has difficulty sharing new information with B because she
cannot know what B already heard from C. We designed a
tool called Link Different to address this problem on Twitter.
When someone wants to share a link with their followers,
Link Different reports how many of them already saw the
link via someone else they follow. Deployed openly on the
web for two months, nearly 150K people used Link Different
1.3M+ times in total. We think these orders of magnitude



speak volumes: people still want social translucence’s cues,
but network structure gets in the way.

We begin by reviewing social translucence and its descen-
dent systems, as well foundational work on social networks.
Next, we introduce Link Different and the sharing behavior
of its users. Finally, we conclude the paper by extending
the theoretical work behind Link Different, arguing that new
social computing problems lie at the intersection of social
translucence and various unexplored network structures.

LITERATURE REVIEW

First, we review the theory of social translucence. We also
consider some of the many systems architected around it. Be-
cause our approach connects social translucence with social
network structures, we conclude this section with a summary
of fundamental social network research.

We focus on social translucence because it provides spe-
cific design guidance that we can overlay on social networks.
However, theoretical alternatives exist. For example, the ven-
erable CHI paper “Beyond Being There” [34] argues that we
shouldn’t try to replicate the affordances of real life in social
technologies—a central tenet of social translucence. This
tension deserves resolution, with new work perhaps arising
by adopting an alternative theoretical lens.

Social Translucence

Comprising three major papers [21, 22, 23], the theory of
social translucence aims to take what we do so naturally in
real social life and map it onto online social media. (However,
the term “social media” didn’t exist at the time and doesn’t
appear in those papers.) Erickson & Kellogg write:

The difficulty of digital communication and collaboration
stands in stark contrast to our ability to communicate and
collaborate with one another in the physical world ... We have
evolved an exquisite sensitivity to the actions and interactions
of others. Whether it is wrapping up a talk when the audience
starts fidgeting, or deciding to forego the grocery shopping
because the parking lot is jammed, social information like this
provides the basis for inferences, planning, and coordination
of activity. [22] (p. 60)

(Hereafter, we refer to Erickson & Kellogg as “E&K.”) This
is the yardstick against which E&K argue we should measure
our social technologies. Despite being published more than
ten years ago, we can see technologies still catching up with
the vision. For example, the recently launched startup Local-
mind lets users ask “how crowded the bar is, or how long the
line to the club is” from afar [42]. Presumably, you might
choose to stay home if the club line is too long, recalling
E&K’s jammed grocery store parking lot.

Unless explicitly designed into systems, most social infor-
mation remains hidden inside databases. E&K propose three
guiding principles for bringing it to the forefront, which we
referred to at the beginning of the paper: visibility, aware-
ness and accountability. Each gives rise to the next, and
visibility is the most basic. Social translucence argues that we
should make collective activity visible to everyone in a space.
Of course, privacy is an issue, and this is where the word
“translucence” takes on particular importance. Rather than
build a totally transparent system (e.g., publish GPS coordi-
nates), a system should abstract away from raw data without

sacrificing too much useful social information (e.g., publish
neighborhoods). In addition, constraints act on visibility. For
example, our ability to see things decays as we move farther
away from them. Social software can model this, for instance,
by providing greater resolution to people nearby.

Awareness arises from visibility. Having seen the social cues
floating around me, I absorb them, and use them to decide
what to do next. Furthermore, my social and cultural expecta-
tions come to bear on my newfound awareness. For example,
suppose I see you methodically cleaning up files in our shared
code repository. I become aware that soon you will reach my
files, and social customs dictate that I release my lock on the
files so you can do your work. Finally, out of this distributed
social awareness comes a second-order effect: accountability.
As E&K put it, “I know that you know that I know.”

As we alluded earlier, social translucence has been very influ-
ential in social computing and CSCW, attracting over 1,000
citations since its publication a decade ago [30]. Across a
wide variety of application areas, many systems have used it
to guide design (e.g., [7, 9, 11, 24, 36, 46, 47]). Most work has
focused on small groups. For example, [11], [24] and [36] use
social translucence to abstract away from raw presence data
in experimental IM clients. In [7], the theory provides a way
to visualize abstract histories of presence among distributed
workgroups. A notable exception to the small-group trend is
WikiDashboard [46], which employed social translucence to
make behind-the-scenes Wikipedia activity visible.

Particularly relevant to the present work, [9] built and field-
tested a “directed content sharing” tool called FeedMe. While
browsing RSS feeds in Google Reader, FeedMe recommends
people who might also be interested in an article and lets
you to share it with them via email. FeedMe uses social
translucence to show you how many other FeedMe recom-
mendations the target person has received. We take FeedMe
as a point of departure. Where FeedMe allowed point-to-point
sharing via email, we ramp the idea up to social media at
scale on Twitter. To the best of our knowledge, the system we
present in this paper is the first to connect social translucence
and large-scale social networks.

Social Networks

Studied by sociologists for decades [38], social networks
silently structure social life. The literature is simply too vast
to cover here, but we attempt a very brief overview of fun-
damental work. Social networks start out simply: I become
friends with you, you become friends with someone else,
and so on. Friendships often form by way of homophily (i.e.,
shared interests and tastes) [43] and a process called prefer-
ential attachment [5], whereby people prefer to connect with
those who are already well-connected. Over time, a complex,
organic structure emerges. Via a network’s macroscopic struc-
tural properties and dynamics, you can tell who is popular
[6], who will have good ideas [17] and who in a company
will get promoted [16].

It is important to note that social networks differ from social
network sites [13]. Social networks are a concept. Social
network sites (SNSs), on the other hand, revolve around so-
cial networks, using them as a central design element. SNSs



Figure 2. Babble’s “social proxy,” used to signal activity in a chat room.
Avatars, represented by simple abstract circles, move to the center to
signal interest in chatting. Reproduced from [21].

like Twitter, Facebook and Google+ are important: they can
provide us with new social capital [20], answers to questions
[44], and sometimes a sense of well-being [15].

We add to this growing literature by considering the design
of SNSs as a function of embedded social network structures.
We believe this is the first work to do this. In the next section,
we consider how traditional social translucence cues interact
with micro-structures called triads.

SOCIAL TRANSLUCENCE & SOCIAL NETWORKS

E&K often draw analogies between physical space and digital
space. Consider, for example, the system discussed by E&K
in Social Translucence, the chat program Babble. In Babble,
we all enter the same digital space to chat. Your avatar moves
to the center of the room to signal your interest in talking,
and the geometry of Babble’s circular design forces it into
proximity with other avatars (see Figure 2). The parallels
between physical space and online conversational space are
direct and apparent. E&K explicitly connect digital social
spaces with physical ones via an architecture metaphor:

As designers of communication and collaboration systems,
we find ourselves taking inspiration from work in the areas
of architecture and urban design. This is not surprising, since,
like architects and urban designers, we are concerned with
creating contexts that support various forms of human-human
interaction. [22] (p. 61)

As we discussed before, early social media resembled physi-
cal spaces. Chat rooms can be thought of as digital conference
rooms—the insight made by Babble. You could argue that
email distribution lists resemble neighborhood association
meetings and therefore build affordances that mimic those
meetings. In real life, as in these technological metaphors, so-
cial signals are tied to the space. For example, in real life, if [
move, then everybody nearby notices me moving. If someone
addresses our group, but I'm idly looking out the window,
then everybody else can infer that I'm bored. The physics of
everyday life affords these things.

However, modern social media—especially some of the most
popular sites—often do not reflect everyday physical life.
Rather, they rest on the primacy of social networks. Social net-
works do not have physical analogs. On Twitter, you follow
diverse people who share things you find interesting. Those
people follow who they want, and so on. Social signals—the

Figure 3. A fragment of a directed social network like the attention
networks found in Twitter. Highlighted in gold is a triad that gives rise
to a triadic awareness problem. B follows A and C, but A does not follow
C. Consequently, A does not know what B has heard from C.

building blocks of visibility, awareness and accountability—
are not tied to a specific digital space. Rather, social signals
Sflow through networks. Whereas E&K envisioned digital “ar-
chitecture” (i.e., rooms and spaces), today networks structure
many aspects of online social life.

Of course, they also permit a scale of social media unthink-
ably large for 2000, when social translucence was first intro-
duced. Twitter has at least 38 million active users; imagine
them all in the same chat room. (Where “active” is defined,
for the sake of argument, as following at least 16 people [18].)
Networks let us carve up our attention, looking at a select
group of people rather than at everyone. This is probably a
prerequisite for scale.

Yet while the underlying architecture may have changed, we
are still social creatures attuned to social cues. We want social
information so we can act appropriately. We want to know
who’s interested in what we say. We want to know whether
our audience is bored and looking out the window or hanging
on our every word. We want rich social cues that also respect
privacy. We think the spirit of Social Translucence remains
the same. Only the landscape has changed.

A Triadic Awareness Problem

What does this mean for design? As we discussed earlier,
we believe social translucence breaks down because of fun-
damental structural differences between physical space and
social networks. Therefore, we adopt a structural perspective
in this paper. Our major theoretical claim is that different
structures embedded within complex social networks give
rise to different social translucence design problems.

We will work an example end-to-end in this paper. However,
we revisit this broader claim—that network structures unlock
design problems—in our Discussion section as it suggests
new open problems for social computing. Now, we intro-
duce a particular triadic awareness problem. A triad is a
small fragment of a social network: three people and the
ties that bind them. They can exhibit various shapes. Let
us consider the directed attention networks like the ones
that underly Twitter and Google+. Given three people—call
them A, B and C—each relationship can take on one of four
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Figure 4. The Link Different web interface. When a user visits a webpage, she can use the Link Different bookmarklet to compute how many of her
Twitter followers have already seen it from someone else they follow. Link Different displays the information as simple bar charts and includes some
recent history. Users can also copy the link and view a random sample of followers who already saw it.

states: absent, left-directional (Twitter’s “following”), right-
directional (Twitter’s “followed by”) or bidirectional. 64=4
possible triads emerge from the multiplicative combination
of pairwise ties. For example, a triad might be fully closed,
A < B < C < A or some less-connected variant, like
A & B« C. (See [19] for background on triads and [28] for
their recent use in social media research.)

A triadic awareness problem arises from a certain triad, the
one shown in gold in Figure 3: A < B — C. (The arrows
indicate attention flowing in that direction.) Set in the context
of Twitter, this triad means that B follows both A and C, but
A does not follow C (or vice versa). However, because A is
not listening to C, this presents a problem. If A wants to share
novel information with B, then she has to estimate whether B
already heard it from C.

In practice, however, this problem is orders of magnitude
harder than what we just described. A must estimate whether
B already heard her information from C or from anybody else
B follows. Furthermore, A has followers other than B and must
estimate that same thing for each of them. Let us assume that
the average active Twitter user follows 100 people and has
100 followers—probably a conservative estimate [3]. Then
A has to estimate novelty for 100 followers, each of whom
follows 100 people. Therefore, a typical scenario involves
roughly 100°=10,000 triadic awareness problems. All this
complexity arises from a simple question: “What have your
followers already heard?”

Contrast what we just described with a space like a chat
room. There, A simultaneously listens to B and C. In fact,
we might consider a chat room a special theoretical case:
the fully closed triad A <+ B <> C < A. In a chat room,
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Figure S. Link Different bookmarklet installed in Chrome. While visit-
ing a webpage, users click it to run Link Different on the page’s URL.

everyone can talk and listen to everybody else. (They may not
always talk to and listen to everyone, but it is always possible.)
Social networks purposely dissect this idea. A and C choose
not to pay attention to each other; they don’t want social
translucence’s visibility. Like in Figure 1 at the beginning of
the paper, networks disrupt visibility (and hence, awareness
and accountability) between people.

LINK DIFFERENT

The theory we have developed suggested a need for a tool to
solve the triadic awareness problem on social network sites.
This is why we developed Link Different. Link Different is
a web-based application that lets Twitter users know how
many of their followers already saw a link from someone else
they follow. We built Link Different to enhance the common
practice of link-sharing on Twitter. Recent estimates suggest
that at least 25% of all tweets contain a link to somewhere
else on the web [45]. We focused on links, rather than more
general concepts like “newsworthy topics” (e.g., how Google
News groups stories) for tractability reasons which we ex-
plain shortly. Link Different is designed to support a scenario
like the following:

Sue takes a break from the report she’s writing to browse
the New York Times. She reads a fascinating article about the
Chinese economy’s rising service sector. Having built a Twitter
following based in part on her economics expertise, she goes to
share the story on Twitter. But then Sue notices its publication
date: yesterday. News flies fast on Twitter, and she sees the
distinct possibility that her followers already saw this article
from someone else. She brings the URL to Link Different.
Link Different provides her with a simple bar chart showing
the proportion of her followers who already saw the New York
Times piece from somebody else they follow. Sue chooses to
share it after seeing that only 22% of her followers saw the
story already.

People interact with Link Different via a bookmarklet they
install in their browser. Much like bit.ly’s bookmarklet [12],
users install a small snippet of Javascript in their browser’s
bookmarks bar (see Figure 5). While visiting some page on
the web and considering sharing it on Twitter, users can click
the bookmarklet to have Link Different operate on the their
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Figure 6. Link Different’s server-side architecture. The application is distributed across five load-balanced machines, each running its own pool of
parallel Scala actors. URLs and textual features get passed to a Twitter search to find references to the target webpage. The first 10,000 people to
reference the target page are compared to the triad cache, which we build when someone uses Link Different for the first time.

page’s URL. To get access to the bookmarklet, people first
have to authenticate Link Different’s Twitter app—something
they do once at sign-up. (We explain the reason behind au-
thentication in the Implementation section.)

When a user clicks the Link Different bookmarklet, a new tab
opens, bringing them to a page like the one in Figure 4. We
modeled this interaction on bit.ly’s behavior when shortening
URLs. After Link Different finishes its crawl of the user’s
Twitter network, Figure 4’s simple bar charts appear. The top
one shows the total number of followers, while the one below
it shows how many followers already saw it from someone
else they follow. In Figure 4, slightly more than half of the
user’s followers have seen it already. Link Different also
shows a recent history in gray. We pursued a very simple
design, hiding the complexity of the distributed Twitter crawl
in the server-side software.

Link Different automatically shortens the link for users, using
bit.ly’s API, and it also provides a copy button to let users
quickly put the shortened link on their clipboard. After our
release, we received many tens of requests from users asking
for a feature to let them know which followers had seen the
link already. The logic behind many of these requests seemed
to be that different followers are differentially important, and
our users might be willing to bother some as long as a few
others benefitted. In response, we added the “who?” button.
It reveals a random sample of up to 50 followers who already
saw the link, sorted by their number of followers—a proxy
for their status on Twitter.

Implementation

Link Different’s user interface is simple HTML, CSS and
jQuery [39] served by PHP. Link Different’s server-side
architecture, on the other hand, is a parallelized distributed
system. Figure 6 presents an overview. To ensure acceptable
response times with potentially thousands of concurrent users,
Link Different is distributed among five high-end machines
(e.g., Quad-core 17, 16GB+ RAM, etc.) that interact with
each other via message passing. The software is written in

Scala and uses its actor and message-passing implementations
[32]. That is, the components broken down in gray boxes in
Figure 6 operate in parallel with one another, responding to
requests from other components when they have available
time and resources. The Link Different architecture makes
thousands of HTTP requests every time a user clicks the Link
Different bookmarklet, yet its distributed design means that
most people receive responses within 10 seconds. (This is
admittedly long by web standards, but we considered it ac-
ceptable for a research prototype.) Also, Twitter granted us a
whitelisted IP address, providing Link Different with 20,000
API requests per hour, per user—the reason we require users
to authenticate our Twitter app.

A historical quirk in Twitter’s design substantially compli-
cates the Link Different implementation. Since Twitter limits
tweets to 140 characters (an artifact of Twitter’s early text
message focus), people have an incentive to shorten their
URLs to save characters in their tweets. A number of ser-
vices sprung up to serve this need, such as bit.ly, the most
popular URL shortener [1]. Moreover, many of these short-
ening services provide their users with personalized click-
through statistics. They do this by creating custom short-
URLSs for every person (e.g., http://bit.ly/AB4fgT for you
and http://bit.ly/6kyk90 for me), each resolving to the same
long-URL via HTTP redirects. This means that for a popular
article on the web, say a New York Times article, thousands
of short-URLs often exist. Link Different needs to track all
of these. While bit.ly and tinyurl APIs permit discovering
all short-URLSs (and luckily account for nearly 90% of short-
URLSs [1]), other services do not.

Therefore, in addition to pushing the Link Different user’s
long-URL through various shorteners, we also perform Twit-
ter searches on key textual information from the webpage.
Our goal is to find references to the target article not discov-
ered via the URL search. We extract text within the title,
header (i.e, <hl>, <h2>, <h3> and <h4>) and meta
tags. Every possible tri-gram phrase is used as input to its



own Twitter search. In addition, we use the Google 1T corpus
[14] to compute normalized TF-IDF statistics [25] for each
uni-, bi- and tri-gram from the page’s non-HTML text. The
Google 1T corpus has baseline frequencies for phrases on the
web, and computing these statistics uncovers a page’s most
descriptive phrases. The phrases scoring in the top decile
become inputs for their own Twitter searches. For all these
searches (a typical page creates around 500), any tweet con-
taining a URL is queued for inspection by the “URL search”
process. If they resolve to Link Different’s target, then the
person tweeting the URL is a candidate. We consider up
to 10,000 Twitter users as candidates in our server’s final
stage. (An alternative to our textual approach, one taken by
the recently acquired BackType [4], is to catalog and index
every URL on the Twitter firehose. While it would greatly
simplify Link Different, we did not have resources to build
something at this scale.)

The “URL search” and “Text features” searches ultimately
generate candidate Twitter users who could be parts of triads
similar to the example in Figure 3. To find the subset that
belong to these triads, we cache all people who could be Cs
in a Figure 3 triad. The first time someone clicks the Link
Different bookmarklet, we build a triad cache in parallel with
the ongoing search described above. A distributed crawl is
initiated, where we build an index mapping every C to a list
of Bs that follow C. We store this cache in a MySQL database.
Here, we traded space for time, as the average Link Different
user requires roughly 1K of cache space. However, as a result,
for every candidate Twitter user returned via searches, we can
use our index to do a constant-time lookup, retrieving every
one of our user’s followers who follows the candidate. After
removing duplicates by adding them to a set data structure,
we arrive at the number of followers who already saw this
link from someone else they follow.

Limitations

Link Different’s user interface is very simple. It does not
let you explore who mentioned a link to your followers, nor
when they saw it. It cannot tell you whether your followers
actually clicked on the link they saw from someone else,
only that it appeared in their Twitter streams. People would
almost certainly welcome this deep information. Furthermore,
it would be interesting to extend Link Different to operate on
stories rather than links. For example, when a major event
happens (e.g., the Super Bowl), various outlets cover it. We
can envision users welcoming the opportunity to explore con-
cepts rather than simple URLSs. Link Different’s text searches
might be the beginning of an approach.

Moreover, Link Different makes probabilistic tradeoffs in its
server implementation. There is no guarantee that the “saw
it” number is precise. For performance reasons, we traded off
precision for response time. Deeper indexing strategies might
resolve these inconsistencies.

WEB FIELD STUDY

We chose to evaluate Link Different as an open field study
on the web. Other approaches also make sense, such as an
in-depth, but small-N field study like the one in [9]. Yet, we
were primarily interested in establishing a new theoretical
claim: that this triadic awareness problem exists and people

struggle with it. Rather than showing that a technology solves
a problem we know to exist, in this paper we want to study
whether the problem exists at all. For this reason, we chose
to open Link Different up to any Twitter user on the web.

After finalizing the Link Different build, we “launched” it
by sending short email messages describing the project to a
handful of well-known technology blogs. We were fortunate
enough to have one of them cover Link Different [41]. Often,
one of the biggest hurdles for a release—especially for an aca-
demic lab—is getting the initial word out, and this helped us
overcome it. Simultaneously, the blog coverage meant that we
did not have to rely on our existing online networks, such as
Twitter, Facebook and internal email lists. For example, this
sidesteps validity threats due to snowball samples originating
with a technology’s creators [10]. After the initial coverage,
Link Different primarily spread virally through Twitter. Dur-
ing its two months online, 144,232 unique people used Link
Different 1,343,322 times in total. The blog coverage drove
an initial burst of visitors to the site, but via HTTP referrer
headers [29] we found that 84% of Link Different’s usage
came from our users discussing Link Different on Twitter.

Sharing Behavior

After releasing Link Different, we found that we were gen-
erating very interesting data about conformity and novelty
effects on social media sharing. Although not our intention,
you can view the simple Link Different interface as a prompt
to this question: “Now that you know what proportion of
your followers have already seen your link, do you still want
to share it?” We realized that viewing sharing behavior as a
function of the proportion of followers who have already seen
the link may yield new insight into conformity and novelty
in social media.

Because Javascript cannot copy text to the clipboard across
browsers, Link Different uses a snippet of Flash code to let
users copy the bit.ly link. Rather than load this code upfront,
we use jQuery to load it dynamically into the page when the
user clicks the copy button. Via this mechanism, our web
server logs recorded when a user decided to copy a link and
when they didn’t. Presumably, when they use the copy button,
they intend to share it on Twitter.

To verify this copy-as-proxy idea, we randomly sampled
5,000 instances where a user copied a link and 5,000 where
they did not (out of the 1,343,322 total events). Our goal was
to estimate how often a copy click leads to sharing and how
often a non-click entails not sharing. If consistent, we can
use the copy click as a proxy for sharing without having to
crawl every tweet ever made by everyone who used Link
Different—something we simply did not have the resources
to accomplish. Over 90% of copy clicks lead to sharing and
over 90% of non-clicks lead to not sharing. Therefore, for the
remainder of this discussion, we will use copy-click data as a
proxy for sharing data.

From our 1,343,322 events, we computed the proportion of
links shared as a function of a moving 2% “already seen”
window. Figure 7 illustrates the results. For example, the left-
most bar in Figure 7 says that people shared links 42% of the
time when only 0-2% of their followers had seen the link from
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Figure 7. The proportion of links shared (y-axis) as a function of the
proportion depicted in the Link Different interface (x-axis). Given a
stimulus of how many followers already saw a link, the graph shows
the likelihood of sharing it. The orange line plots a Multiple Adaptive
Regression Splines (MARS) fit, uncovering four different regions.

someone else. We chose a 2%-wide window because it was
the smallest integer to produce 99% confidence intervals of
+1% using the Agresti-Coull confidence interval technique
for proportions [2]. Other window sizes could presumably
change Figure 7’s shape slightly.

It would be nice to abstract away from some of the noise
in Figure 7. Therefore, we used R’s MDA library [33] to
compute a Multiple Adaptive Regression Splines (MARS)
fit of our data. In essence, the technique iteratively converges
on a piecewise linear fit, uncovering regions with fundamen-
tally different shapes. It learns these regions from data. The
orange line in Figure 7 shows the MARS fit. It uncovers
four segments, each modeled as a line with a different slope.
From left to right, they have slopes (i.e., 8-weights), 3.86,
-4.46, -2.23 and 1.9. This model fits the data reasonably well,
with an Adj. R? = 0.445. While some regions in Figure 7 are
distinctly curvilinear, the MARS decomposition provides an
abstract layer over which we can reason and potentially build
theory—something we attempt in the Discussion section.

Limitations

The analysis performed above does not tell us about how often
people share based on what they estimate their followers have
already seen. Presumably, this calculation is part of everyday
sharing behavior on social media sites. It would be interesting
and insightful to look into how sharing varies as a function
of perceived novelty.

Word-of-mouth Twitter referrals drove visitors to Link Differ-
ent. While blog coverage started it, this is a snowball sample
nonetheless. Snowball samples arise when one participant
refers another, who refers another, etc. A concern is that the
participant pool is biased—or, in this context, that it follows
the path of least resistance. Researchers often use snowball
sampling to recruit difficult-to-reach populations [27], and

you could argue that this is one. In any case, we make no
claims that we have a random, representative sample, even
of social media users. We revisit this issue shortly in the
Discussion section.

DISCUSSION

We worked from theory to uncover a problem we suspected to
exist on sites backed by social networks. We built Link Differ-
ent to examine this idea, a strategy we might call a “technol-
ogy probe” [37] at internet scale. We were honestly surprised
by the response from Twitter. Within hours, our servers hit
their memory limits and we rushed to deploy an optimized
architecture (the one depicted in Figure 6). While we firmly
believe social media research does not have to spread virally
to show value, we should also embrace it when it happens—
something other authors have also argued recently [8]. That
is, word-of-mouth adoption is sufficient (and welcome), but
not necessary. In this case, we think the widespread, rapid
and voluntary adoption of Link Different speaks to the scale
and reality of this triadic awareness problem.

That said, we were lucky. The press could have just as easily
ignored us. A release strategy based on an authoritative blog
linking to your project is risky at best. Like other authors, we
have struggled with getting the word out in other projects. We
can offer no conclusive strategies or advice. Simply put, this
time it worked. Furthermore, viral adoption has its downsides.
For example, we cannot claim that we recruited even a ran-
dom Twitter sample, let alone a random sample. We attracted
those people willing to experiment with a new tool. This is
what we meant when we said “the path of least resistance”
earlier. Like a river, Link Different probably found its way via
referrals to the people who were most inclined to use it. While
100K+ users is quite high for an academic project, you could
reframe the number the following way. Very conservatively,
Twitter has 38 million active users. Do only 0.4% of them
(i.e., 150K/38M) face the triadic awareness problem? Also,
probably not. We think it is wise to not test the total numbers
of users statistic too rigorously. However, we do claim that the
widespread and voluntary response suggests a deep problem
lurking under the network.

Users’ sharing behavior surprised us. When we built Link
Different, we hypothesized that sharing was strictly inversely
proportional to novelty. We would have expected a graph that
started high on the left and went primarily down from there.
Rather, we find a bimodal distribution, with curious points
at the leftmost and rightmost ends. The likelihood of sharing
starts at around 40% when almost no one has already seen
your link, steadily rising to over 80% when 16-18% of your
followers haven’t seen it. One way to interpret this is that
perhaps we do not want to share things that no one seems to
be interested in, and we wait until a bigger (but still small)
fraction of people see it to finally share the link. From there,
the data does what we would expect, moving steadily down
through the next two MARS segments. Then it goes back
up again. This truly surprised us. At around 72%, sharing
behavior starts to track steadily up from its low points in
the 40-60% range, finally peaking when almost everyone
has seen it (the high bars in the 94-100% range). Perhaps an
interpretation is that sharing with people who already know



about it is valued because it serves to signal that you too are
“in the know.”

These data provide a starting point for asking questions about
whether sharing behavior depends on the genre of the link
shared. Also, does it vary as a function of follower counts or
time on the site? These are all interesting questions, and we
look forward to follow-up research.

Social Translucence Over Social Networks

We built Link Different around a theoretical idea for design-
ing social network sites: small structures embedded within
social networks unlock social translucence design problems.
Specifically, we employed a method where we started with a
triad and looked for where social translucence breaks down
over it. With Link Different, we looked at one triad and built
a system to solve a an awareness problem that arises from it.
The response from Twitter suggests the scope of the problem.

We believe this extension of social translucence has depth.
If you count the members of a triad as interchangeable (i.e.,
the A, B, C labels have no real meaning), then directed social
networks have 16 non-isomorphic triads ([26], pgs. 141-142).
(In network/graph theory, “isomorphism” means you can turn
one graph into another by relabeling the nodes/vertices.) This
gives us 16 structures over which we can examine where so-
cial translucence breaks down. Intersecting any one of these
structures with a social translucence design trait (i.e., visi-
bility, awareness and accountability) could yield new insight
into problems in today’s social media. In other words, this
means 48=16-3 new design spaces.

In Table 1, we have mapped out six problems we feel likely to
exist over certain triads. This is the start of work in this space,
and much research needs to be done cataloging and assessing
triadic social translucence problems. We offer Table 1 as a
sample of what this approach might produce. For example, in
Table 1’s first example design problem, we highlight tensions
that arise from Granovetter’s “forbidden triad” [31]. In his
words, “if strong ties A-B and A-C exist, and if B and C are
aware of one another, anything short of a positive tie would
introduce a ‘psychological strain’ into the situation.” (You
have to allow for mapping his labels to ours and letting his
“strong tie” be our “bi-directional.”’) So how does B carry on
a simultaneous conversation with A and C without drawing
attention to the forbidden triad? In a simultaneous conversa-
tion between the three, B would reference both A and C, but C
would notice that A’s replies never mention him. While this
triad occurs relatively infrequently in natural social networks
[35], the sheer scale of modern social media sites suggests
millions of these triads exist on the internet today. This also
highlights an interesting point: design problems are condi-
tioned upon the baseline probabilities for how often particular
triads occur in social networks.

In Table 1’s fourth example, we see a problem Twitter ad-
dressed a few years after it launched. In Twitter’s early days
online, A could see B’s conversation with C, even though A
doesn’t follow C. But since A doesn’t follow C, she never saw
C’s replies. Twitter solved this with software changing how it
routes messages: A now only sees B’s conversation with C if
she also follows C, cutting A out of the conversation entirely.

Triad Trait Example design problem

1.A@ < @C Visibility When chatting with A and C,
how does B not highlight the
B® “forbidden triad?”
2.A0 ocC Visibility B hears something from A
N/ relevant to C. How does B
B® bring it to C’s attention?
3. A@—0C Awareness Are A and C always aware

\ / that B hears everything they
B® say to one another?

A® ®cC Awareness A can hear what B says to C,
\ f but not what C says back.
B® * addressed by Twitter.

5. A0 —0C Awareness A followed C because B did.

\ A Now B severed the tie. Does

B®

A still want to follow?

B can take credit for what C
says, since A only hears C
through B.

A® ® C  Accountability
N/
BO®

Table 1. Six triads and potential social translucence design problems
that arise from them. We argue that design problems arise from specific
structures, although more work needs to be done establishing preva-
lence and importance.

Other solutions exist, but we highlight this case to show a
real-world occurrence of a triadic design problem. You can
also consider the structural dynamics in triads and its role in
design (i.e., how ties change over time). We take a first step
in this direction with Table 1’s fifth design problem.

What about bigger structures? In this paper, we have exclu-
sively considered triads, leaving out higher-order structures
connecting four, five or even six people. Higher-order struc-
tures may yield their own insights, but perhaps at the cost
of greater conceptual complexity. The complexity of such
structures rises roughly as the square of the number of people
in them, so we must carefully choose what structures design-
ers should consider. In other words, the bigger the structure,
the harder it is to reason about. In any case, we need more
work cataloging where social translucence breaks down over
specific structures within networks.

Social translucence offers fundamental theoretical guidance
for social media designers: who-sees-what, who-knows-what
and who-knows-that-I-know. We argue that it is out of these
building blocks that bigger theories about designing social
media emerge [40]. We need to know as much as we can about
the lower levels of design (i.e., their structural properties) to
support higher-level problems, such as starting a new commu-
nity. We think Link Different highlights the significance of
structural design problems underlying today’s social media.

Limitations & Future Work

We hope to see new work pick up where we left off. Link
Different’s user interface could benefit from extensions per-
mitting deeper inspection of the social connections behind
sharing. The server implementation could be extended to



handle more complex stories, not just URLs. While we find
the study of sharing behavior in this paper fascinating, it is
just a start. It presents as many questions as answers.

We hope future work finds traction with the new theory in
this paper. That said, what we have presented here is just the
beginning. We need more work to uncover which problems
occur in the real world and which matter most. We envi-
sion both theoretical work that extends this research, as well
as more practically oriented systems work establishing the
parameters of particular problems.

CONCLUSION

We believe this work addresses a fundamental issue for mod-
ern social media: providing social cues over social networks.
The theory we would normally turn to—social translucence—
breaks down because social networks resist social translu-
cence’s physical metaphors. In this paper, we built theory
relating social translucence to social network structure, updat-
ing social translucence for the era of social networks. Based
on the widespread and viral response we got when we applied
it, we think this approach has the potential to uncover other
problems lurking in social media today.
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