
Research Review of Algorithm Model in Graphic
Database System

1st Tianrui Liu
The Grainger College of Engineering

University of Illinois at Urbana-Champaign
Champaign, USA
tl49@illinois.edu

2nd Tiannuo Yang
College of Liberal Arts and Sciences

University of Illinois at Urbana-Champaign
Champaign, USA

tiannuo2@illinois.edu

Abstract—Nowadays, with the establishment of social net-
works, graph data has played a critical role in everyday life.
A graph database should be capable of dealing with the corre-
sponding graph data. Every node in the graph is a data point, and
the edges between nodes denote the relationship between data.
The graph database is expected to reach the relationship between
nodes rapidly and accurately, thus benefiting areas in need of vast
computational resources, such as business and social networks.
Querying and indexing the graph database is the most crucial
part to reduce the computational resources, which naturally
becomes the focus of this paper. In this review, we concluded the
existing approaches and techniques of querying and indexing and
summarized the pros and cons for each of them. Possible future
research directions were also provided based on the analysis of
existing ones.

Index Terms—Graph-based database, Algorithm of database,
Data management systems

I. INTRODUCTION

Graph data has become a regular and crucial part of our
daily life. We can represent data in various domains, includ-
ing graphs, chemical compounds, social networks, biological
compounds, and enzymes [1]. For example, taking social
media sites, every account is stored as a node in the database
with multiple attributes such as name, age, and gender. The
relationship between nodes includes followers, liked posts, etc.
The relationship of graph data is so complex that it would take
too much time to comprehend and utilize any graph collection.
To deal with this problem, if we can find a powerful query
and index method, time can be saved during the data collection
process [2].

Let D = {g1, g2, · · · , gN} be a graph database. The query
in the graph database is described like this: given a query graph
q, we want to retrieve all gi ∈ D such that gi is a supergraph
of q. The graph structure is very complex, which requires us
to match every part of the subgraph with the query in query
processing, meaning that every attempt to get the subgraph of
gi is a NP -complete problem. Using a naive method to deal
with this problem, we will find that the cost is unacceptably
high: even a simple search would consume plenty of time.
To reduce the computation complexity, people build up an
effective index structure, the idea of which is based on trees
and filtering sequences [3]. For instance, the closure-tree is
an index structure for graph queries by using the tree, and

FG-Index uses the filtering sequences to deal with the graph
queries.

The structure of this review is demonstrated as follows:
first, problems in graph queries are defined. Then several
methods are introduced to improve the graph queries. Next, the
performances of different methods are compared [4]. Finally,
a conclusion on the above methods is made, and new research
aspects are provided for future exploration.

II. PRELIMINARIES

In this survey, we restrict our discussion to undirected
labeled connected graphs even if some of the introduced
methods can be used on the directed and unlabelled graphs.

A graph can be defined as (V,E, L, l) [5], where V repre-
sents the set of vertices in this graph and E is used to represent
the edge in this graph, L is the set of labels and l should be the
function which maps the vertex or edge to every label. And
we define the size of graph g as size(g) = |E(g)|. The edge
in this graph can be distinct represent by two nodes e = (u, v)
where e ∈ E and u, v ∈ V .

Definition 1 (Subgraph Isomorphism): A subgraph isomor-
phism is an injective function for two graph g = (V,E, L, l)
and g′ = (V ′, E′, L′, l′), f : V (g) → V (g′), such that
(1) ∀u ∈ V, f(u) ∈ V ′ and l(u) = l′(f(u)), and (2)
∀(u, v) ∈ E, (f(u), f(v)) ∈ E and l(u, v) = l′(f(u), f(v)).

Definition 2 (Graph Query Processing): Given a graph
database D = {g1, g2, · · · , gN} and a graph query q, it will
return the query answer Dq = {gi|q ⊆ gi, gi ∈ D}.

Many graph-related problems should be extremely difficult
[6]. Moreover, when it comes to query processing, the majority
of issues share these characteristics:

1) A single attribute index (vertex label or edge label) is
insufficiently selective, but a random combination of
numerous characteristics produces an enormous number
of index entries [7].

2) The query is rather large, containing numerous edges.
3) In a large database, a sequential scan and test are costly.

The method mentioned in the next section can help us deal
with these problems.

III. A FORMAL REPRESENTATION OF A PATTERN FOR A
GENERAL METHOD

There are several methods for graph indexing, and most of
them are based on the tree structure or pruning method. In
this part, we will roughly discuss the methods for indexing
the graph, which will significantly reduce the time of graph
indexing.

A. Closure-Tree
The Closure-Tree [8] is a tree that satisfies the following

properties:
1) Each node is a graph closure of its children. The inner

nodes are the closure node, and the leaf nodes are the
database graph.

2) Each node has at least m children unless it is root or
leaf.

3) Each node has at most M children, (M+1)
2 ≥ m.

The subgraph query should be handled in two steps when
employing the closure-tree. The C-tree is traversed in the
first phase, and nodes are pruned based on pseudo subgraph
isomorphism. After this stage, a candidate’s answer can be
returned. Subsequently, each possible response will be verified
for exact subgraph isomorphism, and then their return, the
results will be in the second step.

They prune by using a histogram-based strategy besides
the subgraph isomorphism method. A graph’s histogram is a
vector that counts the number of vertices and edges with each
property. Let FQ and FG be the histograms of Q and G,
respectively, given a query Q and a graph G. If Q and G are
subgraphs isomorphic, then FQ[i] ≤ FG[i] for all i. They will
then use this property to put this node to the test. Subgraph
isomorphism tests are slower than this method. The sketch
line of this method is shown in Alg.1, where visited should
be obtaining the candidate answer via subgraph isomorphism
and histogram trimming.

Here comes the cost of the subgraph queries’ performance.
Subgraph isomorphism is used to visit and test γ|D| nodes and
database graphs during the search phase. Then we will have
database graphs with |CS| (the number of candidate answers)
that are tested using exact subgraph isomorphism. The total
time should then be

T = γ · |D| · Tvisited + |CS| · Tisom

Let’s assume that the closure-tree has a h-level. Let x(i) be
the number of children that survive the histogram test in the ith
level and y(i) be the number of children who survived after
the subgraph isomorphism test in the ith level. R(i) be the
expected number of nodes and database graphs visited below
a node at level i.

R(0) =

h−1∑
i=0

x(i)

i−1∏
j=0

y(j) +

h−1∏
i=0

y(i)

γ =
1 +R(0)

|D|

Algorithm 1 SubgraphQuery(query, ctree)
candidates← {}, ANS ← {}
V isit(query, ctree.root, CS)
for G ∈ CS do

if SubIsomorphic(query,G) then ANS = ANS ∪ {G}
end if

end for
return ANS

B. K-Adjacent Tree

Definition 3 (Adjacent Tree): The adjacent tree of a vertex
v(AT (v)) in G is a breadth-first search tree of vertex v, the
children of each node of AT (v) are sorted by their labels in
the graph.
Definition 4 (κ-Adjacent Tree [9]): The κ-Adjacent Tree of
a vertex v (κ−AT (v)) in graph G is the top κ-level subtree
of AT (v).

After getting the definition of these, they firstly generate all
the κ−AT s of each graph in the graph set and store them in
a table. For a query Q, they generate its κ−AT s. Then they
justify whether it holds.

|κ−ATS(Q) ∩ κ−ATS(G)| ≥
|V (Q)| −∆G(Q,G) · 2(δ(Q)− 1)κ−1

If this inequality holds, then G belongs to the candidate set
of the query.

However, if κ increases, the space we need will increase
exponentially, and even if we have enough space to store κ−
AT s, the isomorphism test is also slow on a large tree.

To compact the index size, for each κ − AT , they use a
unique ID to represent the κ-AT. Firstly, they give 1-AT a
unique ID and get the frequency of 1-AT. Then they use the
1-AT to generate the 2-AT. Recursively, they can generate all
of the κ-AT.

Despite the fact that searching on the κ-AT is significantly
faster than using the ∆G matching approach, this method is
still a sequence search method. In this graph, we need to access
all of κ-AT, and the computation cost is very high. Then they
figure out that they can reverse the κ-AT index and use their κ-
AT as keywords in each graph in the graph set. This approach
eliminates the need to search for sequences over the entire
graph. The primary step of this approach is depicted in Alg.2.

Algorithm 2 Filter inv(query,G, ϵ, κ)
generate invQ and invG
for i = 0 to len(invQ) do

pick up the inverted list of invQ[2κ− 1] to match invG
end for
Check whether |κ−ATS(Q)∩ κ−ATS(G)| ≥ |V (Q)| −
∆G(Q,G) · 2(δ(Q) − 1)κ−1 satisfied. If satisfied, add this
list to result.
return result

From the paper, we naturally conclude that κ-AT has a better
performance than FG-Index and closure-tree. Moreover, the

bigger the size of the database, the better the performance of
κ-AT is.

C. R-Tree

Like the B-Tree, the R-tree is also a balanced search tree
in which the node contains its children’s range and points
to its children. R-tree, proposed by Guttman in 1984, is the
most popular dynamic spatial index structure, widely used
in prototype research and commercial applications. There are
many different improvements in R-trees for different spatial
operations on this basis.

R-tree is a completely dynamic spatial index data structure
in which insert, delete, and query can be performed simulta-
neously without periodic index reorganization. It is composed
of intermediate nodes and leaf nodes. Leaf nodes store the
minimum boundary rectangle (MBR) [10] of the actual spatial
object, not the actual spatial object.

Fig. 1. An example of a simple R-tree on a two-dimensional rectangle

The R-tree allows sibling nodes to overlap each other.
Therefore, the R-tree cannot guarantee the unique search path
for the exact matching query. To avoid the multi-path query
problem caused by the overlap of sibling nodes in the R-tree,
in 1987, Sellis [11] designed the R+tree that adopts object
segmentation technology to improve its retrieval performance.
The overlapping of sibling nodes is avoided. It is required
that objects spanning subspaces must be divided into two or
more MBRs. R+tree solves the problem of multi-path search
in the R-tree query, but it also brings other problems. For
example, redundant storage increases the tree’s height, reduces
the performance of domain queries, and may cause deadlock
in adverse circumstances.

The basic form of the R-tree algorithm is (I , tuple identi-
fier). Where the ancestor identifier points to the corresponding
data. I is an n-dimensional rectangle of a spatial object
contained in a bounding box, expressed as:

I = (I0, I1, ...In−1)

n refers to the number of dimensions, and Ii is a closed
bounded interval [a, b], used to describe the range of spatial
objects on dimension I . It can have one or two infinite
boundaries, and the surface object is infinite. The non-leaf
nodes of the R-tree contain entries in the form of (I , child

pointer), where child pointer is the address of a low-level node
in the R-tree, and the rectangles are covered in all low-level
node entries. In short, each node contains multiple child nodes
or data (when the node is a leaf), and the node contains a
multi-dimensional rectangle. I represent the smallest bounding
rectangle of all child nodes or data. We can assume solving
the problem of an appropriate insertion path. Only the area
parameter is considered in the description of the R-tree. Later
the area, edge, and coverage will be considered together. The
coverage of one item is defined as follows:

overlap(Ek) =

p∑
i=1,i̸=k

area(EkRectangle
⋂

EiRectangle)

1 ≤ k ≤ p

D. PIS

PIS [12] builds a fragment-based index on the graphics
database. Graph database members are decomposed into over-
lapping fragments, in which fragments with the same topology
are indexed by the R-tree data structure.

Definition 5 (PIS substructure): A fragment-based index
database is constructed based on a graph. Each query graph is
divided into highly selective fragments. Using the index can
effectively identify the collection and validate each candidate
to find all qualified answers.

Two advantages of the method are highlighted over other
methods of violence retrieval as follows:

1) Candidate verification is performed only through the
retrieval structure. In this way, subgraph by subgraph
isomorphism calculation in the database is avoided, and
the candidate atlas has a much smaller size.

2) The candidate set itself is built with the help of selective
fragmentation and a lower distance limit.

Fig. 2. Detailed process of PIS index

Firstly, the basic logical framework is to scan the entire
database and check whether the target graph has a super-
position with a distance less than the threshold. The graphs
that do not contain query structures can be eliminated. Then
Enumerate the overlay candidate graphs of query graphs in
an extensive collection. This structure is based on two main
indexes, fragment and partition. The fragment index is used
as the index feature according to the proposed standard, and
a new index is constructed, in which the range query marks
the graph and skeleton. The partition search divides a given

query graph into a group of non-overlapping data fragments of
the index, finds its equivalent class in the index, and submits
the range query to find the database that conforms to the
superposition distance all fragment databases.

n∑
i=1

d(gi, G) =

n∑
i=1

mind(gi, g
′)

The algorithm of this method is based on NP-hard and
index-based partitioning. Set the instance (I , q) of index
partition as index structure I and query graph Q. In a given
instance (G, w), an index-based partition instance (I , q) is
constructed, I self-loops are added to each vertex on this ring,
and each edge vi and vj is replaced. In this way, it can obtain
the query graph Q, and each ring and all its adjacent edges now
form the unique topology in Q. It must be a set of subgraphs
described. Namely, each subgraph is a ring, and its vertices
have the same number of self cycles, and each vertex has an
adjacent edge.

Algorithm 3 PIS structure in Graph search
for each fragment g and [g] is indexed do

F = F union g, remove fragments g from F
end for
for each fragment g in F do

calculate g’s canonical label, locate the index structure
I pointed, submit a range query

for each pair g, G do
if G in T then

d(g,G) = min(d(g,G), d(g, g’)
else

d(g,G) = d(g, g’), T = T union G
end if

end for
end for
construct an overlapping relation graph for Q
select a partition P according to Greedy()

E. Tree-Pi

There is a new structure TreePi [13] in tree-based mining,
which is a method of using frequent subtrees as graph structure
index units. Frequent subtrees are used as index structures
because the tree is a more compact form to store structural
information in graphical databases, especially the structure
and data set in the graph database. This makes indexing and
searching easier. More importantly, the symmetry of trees
makes the retrieval structure more complete.

1) Tree data structures are more complex patterns than
paths and trees as they can preserve an almost equivalent
amount of structural information as arbitrary subgraph
patterns.

2) The frequent subtree mining process is relatively easier
than the general frequent subgraph mining process.

The main structure rules of TreePi are through the index
method based on frequent trees. It selects a set of frequent

trees in the graph database as the index mode. In query
processing, for query graph Q, the frequent subtrees in Q
are listed respectively. Furthermore, we determine the graphics
that contain these subtrees in the database. The standard form
of any tree can be calculated in polynomial time, and it
can rapidly perform the first filtering operation. Moreover,
by applying the center distance constraint, TreePi reduces the
graph database and query graph, which dramatically reduces
the search space. In addition, the location information tree
stored in the feature part is used in the verification phase.

Fig. 3. TreePi Processing structure

TreePi can be divided into two main steps for graphic query
processing: construction and query processing of database
preprocessing. In the first step, the subtree in the frequent
graphics database is enumerated and selected as the feature
tree. Next, query any subtree existing in the feature tree.
Query processing is divided into three steps: the query graph
is divided into a group of function trees and then filtered and
trimmed respectively to project the graph database. In the end,
it is applied to the center distance constraint.

For TreePi, because the number of different trees will
increase exponentially over time, unique methods are used in
the pretreatment process σ function in order to ensure the
integrity of the index and the worst case.

σ(s) =


1 if s ≤ α

1 + βs if α < s ≤ η

+∞ if s > η

For tree filtering and center processing, the concepts of dis-
tance chart and center distance constraint based on the center
of query subtree are adopted. It uses the position information
of the number and adopts any substructure mode without the
unique center. On the candidate graph, the algorithm can filter
out most of the unqualified candidate graphs.

F. GD-Index

In this method, Directed Acyclic Graph is utilized to
represent graph decomposition which can get the graph G’s
structure [14].

1) Each node is a subgraph P of G.
2) For any two nodes P and P ′, there is a directed link

from P to P ′ if P ⊂ P ′ and there do not exists any
other graph P ′′ where P ⊂ P ′′ ⊂ P ′

Fig. 4. Decomposition of a complete graph

Since the amount of the graph data is so huge, some fast
search methods are needed to search the query. In this paper, a
hash table is used based on the canonical code. Every different
entry G will be made for a different canonical code ϕ(G).
Then canonical code is used as a key to store the graph so
that the search function can quickly locate the node in DAG
if this subgraph is isomorphic to the query graph.

Algorithm 4 GD-index(G)
ans = ∅, visited = ∅
v = H(ϕ(G))
if v exists then

V isit(v, ans.visited)
end if
return ans

By using this method, there is no need to compare two
graphs sequentially. What is necessary to do is to compare
the canonical code, which reduces a good chunk of time
to compare on the large graph. However, this method also
has some disadvantages in that it performs well on the large
graph, but it may consume more time when the graph database
contains many small graphs. The Alg.4 shows the primary step
of the GD-index.

From the experiment, it can be concluded that the GD-Index
has a better performance than the closure-tree, and when the
size of the query gets larger, the average query time decreases.

IV. CONCLUSION

Query processing often includes a cost-based optimization
step in which query optimizers use cost models to select the
best query plan from a set of options. The cardinality estimate
of the intermediate and final query results is a critical issue in
the cost model. Most of existing indexing methods still have
significant disadvantages. A framework which can estimate
the selectivity of more complicated graph patterns accurately
and speed up the processing of various graph queries is thus
needed.

Graph database enables individuals and organizations to
better understand the large amount of collected data, thus
contributing to the development of business and society. It
helps determine the relationships of data, which are difficult
and even impossible to be clarified using other techniques,
and beneficial for data professionals at all levels to release the
potential of their data relationships, instead of just a single data
point. The imagination of database users becomes the only

limitation on how to use these relationships. Driven by 5G,
the Internet of things, artificial intelligence, and other digital
technology innovations, the complexity of the association
among data also increases drastically. The traditional relational
database, therefore, has low operation efficiency when dealing
with complex associated data and is no longer able to help
people further explore the value behind the massive relational
data. That is why new technology of graph database has
come to life. However, it is not perfect since it tends to be
optimized for speed and structure, meaning that the data would
be represented as a table without too many missing values,
which is often not a good choice. In conclusion, a graph
database is essentially a solution to solidify and query graph
data structure. However, in real practice, people still need to be
cautious when using it and remember to be flexible according
to the actual situation.

REFERENCES

[1] X. Yan, F. Zhu, P. S. Yu, and J. Han, “Feature-based
similarity search in graph structures,” ACM Trans. Database Syst.,
vol. 31, no. 4, p. 1418–1453, dec 2006. [Online]. Available:
https://doi.org/10.1145/1189769.1189777

[2] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern
mining: Current status and future directions,” Data Min. Knowl.
Discov., vol. 15, no. 1, p. 55–86, aug 2007. [Online]. Available:
https://doi.org/10.1007/s10618-006-0059-1

[3] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu, “Igraph: A framework
for comparisons of disk-based graph indexing techniques,” Proc. VLDB
Endow., vol. 3, no. 1–2, p. 449–459, sep 2010. [Online]. Available:
https://doi.org/10.14778/1920841.1920901

[4] R. kumar Kaliyar, “Graph databases: A survey,” in International Con-
ference on Computing, Communication Automation. Greater Noida,
India: IEEE, May 2015, pp. 785–790.

[5] A. Bhattacharyya and D. Chakravarty, “(graph database: A survey),” in
2020 International Conference on Computer, Electrical Communication
Engineering (ICCECE). Kolkata, India: IEEE, 2020, pp. 1–8.

[6] X. Wang, X. Ding, A. K. Tung, S. Ying, and H. Jin, “An efficient graph
indexing method,” in 2012 IEEE 28th International Conference on Data
Engineering. Arlington, VA, USA: IEEE, April 2012, pp. 210–221.

[7] X. Yan, P. S. Yu, and J. Han, “Graph indexing: A frequent
structure-based approach,” in Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’04.
New York, NY, USA: Association for Computing Machinery, 2004, p.
335–346. [Online]. Available: https://doi.org/10.1145/1007568.1007607

[8] H. He and A. Singh, “Closure-tree: An index structure for graph
queries,” in 22nd International Conference on Data Engineering
(ICDE’06). Atlanta, GA, USA: IEEE, April 2006, pp. 38–38.

[9] G. Wang, B. Wang, X. Yang, and G. Yu, “Efficiently indexing large
sparse graphs for similarity search,” IEEE Transactions on Knowledge
and Data Engineering, vol. 24, no. 3, pp. 440–451, March 2012.

[10] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
SIGMOD Rec., vol. 14, no. 2, p. 47–57, jun 1984. [Online]. Available:
https://doi.org/10.1145/971697.602266

[11] Y. Theodoridis and T. Sellis, “Optimization issues in r-tree construction,”
in IGIS ’94: Geographic Information Systems, J. Nievergelt, T. Roos,
H.-J. Schek, and P. Widmayer, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1994, pp. 270–273.

[12] X. Yan, F. Zhu, J. Han, and P. S. Yu, “Searching substructures
with superimposed distance,” in Proceedings of the 22nd
International Conference on Data Engineering, ser. ICDE ’06.
USA: IEEE Computer Society, 2006, p. 88. [Online]. Available:
https://doi.org/10.1109/ICDE.2006.136

[13] S. Zhang, M. Hu, and J. Yang, “Treepi: A novel graph indexing method,”
in 2007 IEEE 23rd International Conference on Data Engineering.
Istanbul, Turkey: IEEE, 2007, pp. 966–975.

[14] D. W. Williams, J. Huan, and W. Wang, “Graph database indexing
using structured graph decomposition,” in 2007 IEEE 23rd International
Conference on Data Engineering. Istanbul, Turkey: IEEE, 2007, pp.
976–985.

