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BIG DATA

The Parable of Google Flu:
Traps in Big Data Analysis

David Lazer,"** Ryan Kennedy,"** Gary King,® Alessandro Vespignani5®?

Trends (GFT) made headlines

but not for a reason that Google
executives or the creators of the flu
tracking system would have hoped.
Nature reported that GFT was pre-
dicting more than double the pro-
portion of doctor visits for influ-
enza-like illness (ILI) than the Cen-
ters for Disease Control and Preven-
tion (CDC), which bases its esti-
mates on surveillance reports from
laboratories across the United States
(1, 2). This happened despite the fact
that GFT was built to predict CDC
reports. Given that GFT is often held
up as an exemplary use of big data
(3, 4), what lessons can we draw
from this error?

The problems we identify are
not limited to GFT. Research on
whether search or social media can
predict x has become common-
place (5—7) and is often put in sharp contrast
with traditional methods and hypotheses.
Although these studies have shown the
value of these data, we are far from a place
where they can supplant more traditional
methods or theories (8). We explore two
issues that contributed to GFT’s mistakes—
big data hubris and algorithm dynamics—
and offer lessons for moving forward in the
big data age.

In February 2013, Google Flu

Big Data Hubris

“Big data hubris” is the often implicit
assumption that big data are a substitute
for, rather than a supplement to, traditional
data collection and analysis. Elsewhere, we
have asserted that there are enormous scien-
tific possibilities in big data (9—717). How-
ever, quantity of data does not mean that
one can ignore foundational issues of mea-
surement and construct validity and reli-

*Lazer Laboratory, Northeastern University, Boston, MA
02115, USA. 2Harvard Kennedy School, Harvard University,
Cambridge, MA 02138, USA. 3Institute for Quantitative Social
Science, Harvard University, Cambridge, MA 02138, USA.
“University of Houston, Houston, TX 77204, USA. *Laboratory
for the Modeling of Biological and Sociotechnical Systems,
Northeastern University, Boston, MA 02115, USA. ®Institute
for Scientific Interchange Foundation, Turin, Italy. *Corre-
sponding author. E-mail: d.lazer@neu.edu.

www.sciencemag.org SCIENCE VOL 343

ability and dependencies among data (72).
The core challenge is that most big data that
have received popular attention are not the
output of instruments designed to produce
valid and reliable data amenable for scien-
tific analysis.

The initial version of GFT was a par-
ticularly problematic marriage of big and
small data. Essentially, the methodology
was to find the best matches among 50 mil-
lion search terms to fit 1152 data points
(13). The odds of finding search terms that
match the propensity of the flu but are struc-
turally unrelated, and so do not predict the
future, were quite high. GFT developers,
in fact, report weeding out seasonal search
terms unrelated to the flu but strongly corre-
lated to the CDC data, such as those regard-
ing high school basketball (/3). This should
have been a warning that the big data were
overfitting the small number of cases—a
standard concern in data analysis. This ad
hoc method of throwing out peculiar search
terms failed when GFT completely missed
the nonseasonal 2009 influenza A-HIN1
pandemic (2, 14). In short, the initial ver-
sion of GFT was part flu detector, part
winter detector. GFT engineers updated
the algorithm in 2009, and this model has
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Large errors in flu prediction were largely
avoidable, which offers lessons for the use
of big data.

run ever since, with a few changes
announced in October 2013 (70,
15).

Although not widely reported
until 2013, the new GFT has been
persistently overestimating flu
prevalence for a much longer time.
GFT also missed by a very large
margin in the 2011-2012 flu sea-
son and has missed high for 100 out
of 108 weeks starting with August
2011 (see the graph). These errors
are not randomly distributed. For
example, last week’s errors predict
this week’s errors (temporal auto-
correlation), and the direction and
magnitude of error varies with the
time of year (seasonality). These
patterns mean that GFT overlooks
considerable information that
could be extracted by traditional
statistical methods.

Even after GFT was updated
in 2009, the comparative value of the algo-
rithm as a stand-alone flu monitor is ques-
tionable. A study in 2010 demonstrated that
GFT accuracy was not much better than
a fairly simple projection forward using
already available (typically on a 2-week lag)
CDC data (4). The comparison has become
even worse since that time, with lagged
models significantly outperforming GFT
(see the graph). Even 3-week-old CDC data
do a better job of projecting current flu prev-
alence than GFT [see supplementary mate-
rials (SM)].

Considering the large number of
approaches that provide inference on influ-
enza activity (16—19), does this mean that
the current version of GFT is not useful?
No, greater value can be obtained by com-
bining GFT with other near—real-time
health data (2, 20). For example, by com-
bining GFT and lagged CDC data, as well
as dynamically recalibrating GFT, we can
substantially improve on the performance
of GFT or the CDC alone (see the chart).
This is no substitute for ongoing evaluation
and improvement, but, by incorporating this
information, GFT could have largely healed
itself and would have likely remained out of
the headlines.

14 MARCH 2014

2202 ‘ST Re Al uoeuequn -sioul||| Jo A1sBAIUN Te 610°80us 105" MAMM//Sd1y WO} pepeo umod

1203



POLICYFORUM

1204

Algorithm Dynamics

All empirical research stands on a founda-
tion of measurement. s the instrumentation
actually capturing the theoretical construct of
interest? Is measurement stable and compa-
rable across cases and over time? Are mea-
surement errors systematic? At a minimum,
it is quite likely that GFT was an unstable
reflection of the prevalence of the flu because
of algorithm dynamics affecting Google’s
search algorithm. Algorithm dynamics are
the changes made by engineers to improve
the commercial service and by consum-
ers in using that service. Several changes in
Google’s search algorithm and user behav-
ior likely affected GFT’s tracking. The most
common explanation for GFT’s error is a
media-stoked panic last flu season (/, 15).
Although this may have been a factor, it can-
not explain why GFT has been missing high
by wide margins for more than 2 years. The
2009 version of GFT has weathered other
media panics related to the flu, including the
20052006 influenza A/H5N1 (“bird flu”)
outbreak and the 2009 A/HIN1 (“swine flu”)
pandemic. A more likely culprit is changes
made by Google’s search algorithm itself.

The Google search algorithm is not a
static entity—the company is constantly
testing and improving search. For example,
the official Google search blog reported 86
changes in June and July 2012 alone (SM).
Search patterns are the result of thousands of
decisions made by the company’s program-
mers in various subunits and by millions of
consumers worldwide.

There are multiple challenges to replicat-
ing GFT’s original algorithm. GFT has never
documented the 45 search terms used, and
the examples that have been released appear
misleading (/4) (SM). Google does provide
a service, Google Correlate, which allows
the user to identify search data that correlate
with a given time series; however, it is lim-
ited to national level data, whereas GFT was
developed using correlations at the regional
level (13). The service also fails to return any
of the sample search terms reported in GFT-
related publications (13, 14).

Nonetheless, using Google Correlate to
compare correlated search terms for the GFT
time series to those returned by the CDC’s
data revealed some interesting differences. In
particular, searches for treatments for the flu
and searches for information on differentiat-
ing the cold from the flu track closely with
GFT’s errors (SM). This points to the possi-
bility that the explanation for changes in rela-
tive search behavior is “blue team” dynam-
ics—where the algorithm producing the data
(and thus user utilization) has been modi-
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GFT overestimation. GFT overestimated the prevalence of flu in the 2012—-2013 season and overshot the
actual level in 2011-2012 by more than 50%. From 21 August 2011 to 1 September 2013, GFT reported overly &
high flu prevalence 100 out of 108 weeks. (Top) Estimates of doctor visits for ILI. “Lagged CDC” incorporates 5
52-week seasonality variables with lagged CDC data. “Google Flu + CDC” combines GFT, lagged CDC estimates,
lagged error of GFT estimates, and 52-week seasonality variables. (Bottom) Error [as a percentage {[Non-CDC
estmate) —(CDC estimate)]/(CDC) estimate)}. Both alternative models have much less error than GFT alone.
Mean absolute error (MAE) during the out-of-sample period is 0.486 for GFT, 0.311 for lagged CDC, and 0.232
for combined GFT and CDC. All of these differences are statistically significant at P < 0.05. See SM.

fied by the service provider in accordance
with their business model. Google reported
in June 2011 that it had modified its search
results to provide suggested additional search
terms and reported again in February 2012
that it was now returning potential diagnoses
for searches including physical symptoms
like “fever” and “cough” (21, 22). The for-
mer recommends searching for treatments
of the flu in response to general flu inqui-
ries, and the latter may explain the increase
in some searches to distinguish the flu from
the common cold. We document several other
changes that may have affected GFT (SM).
In improving its service to customers,
Google is also changing the data-generating
process. Modifications to the search algo-
rithm are presumably implemented so as to
support Google’s business model—for exam-
ple, in part, by providing users useful infor-
mation quickly and, in part, to promote more
advertising revenue. Recommended searches,
usually based on what others have searched,
will increase the relative magnitude of certain
searches. Because GFT uses the relative prev-
alence of search terms in its model, improve-
ments in the search algorithm can adversely
affect GFT’s estimates. Oddly, GFT bakes in
an assumption that relative search volume for
certain terms is statically related to external

events, but search behavior is not just exog-
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enously determined, it is also endogenouslyg

cultivated by the service provider.

Blue team issues are not limited to
Google. Platforms such as Twitter and Face-
book are always being re-engineered, and
whether studies conducted even a year ago
on data collected from these platforms can
be replicated in later or earlier periods is an
open question.

Although it does not appear to be an issue
in GFT, scholars should also be aware of the
potential for “red team” attacks on the sys-
tems we monitor. Red team dynamics occur
when research subjects (in this case Web
searchers) attempt to manipulate the data-
generating process to meet their own goals,
such as economic or political gain. Twitter
polling is a clear example of these tactics.
Campaigns and companies, aware that news
media are monitoring Twitter, have used
numerous tactics to make sure their candidate
or product is trending (23, 24).

Similar use has been made of Twitter
and Facebook to spread rumors about stock
prices and markets. Ironically, the more suc-
cessful we become at monitoring the behav-
ior of people using these open sources of
information, the more tempting it will be to
manipulate those signals.
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Transparency, Granularity, and All-Data

The GFT parable is important as a case study
where we can learn critical lessons as we
move forward in the age of big data analysis.

Transparency and Replicability. Repli-
cation is a growing concern across the acad-
emy. The supporting materials for the GFT-
related papers did not meet emerging com-
munity standards. Neither were core search
terms identified nor larger search corpus pro-
vided. It is impossible for Google to make its
full arsenal of data available to outsiders, nor
would it be ethically acceptable, given privacy
issues. However, there is no such constraint
regarding the derivative, aggregated data.
Even if one had access to all of Google’s data,
it would be impossible to replicate the analy-
ses of the original paper from the information
provided regarding the analysis. Although it is
laudable that Google developed Google Cor-
relate ostensibly from the concept used for
GFT, the public technology cannot be utilized
to replicate their findings. Clicking the link
titled “match the pattern of actual flu activity
(this is how we built Google Flu Trends!)” will
not, ironically, produce a replication of the
GFT search terms (74). Oddly, the few search
terms offered in the papers (/4) do not seem
to be strongly related with either GFT or the
CDC data (SM)—we surmise that the authors
felt an unarticulated need to cloak the actual
search terms identified.

What is at stake is twofold. First, science
is a cumulative endeavor, and to stand on the
shoulders of giants requires that scientists
be able to continually assess work on which
they are building (25). Second, accumula-
tion of knowledge requires fuel in the form of
data. There is a network of researchers wait-
ing to improve the value of big data projects
and to squeeze more actionable information
out of these types of data. The initial vision
regarding GFT—that producing a more accu-
rate picture of the current prevalence of con-
tagious diseases might allow for life-saving
interventions—is fundamentally correct, and
all analyses suggest that there is indeed valu-
able signal to be extracted.

Google is a business, but it also holds in
trust data on the desires, thoughts, and the
connections of humanity. Making money
“without doing evil” (paraphrasing Google’s
motto) is not enough when it is feasible to do
so much good. It is also incumbent upon aca-
demia to build institutional models to facil-
itate collaborations with such big data proj-
ects—something that is too often missing
now in universities (26).

Use Big Data to Understand the Unknown.
Because a simple lagged model for flu preva-
lence will perform so well, there is little room
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for improvement on the CDC data for model
projections [this does not apply to other
methods to directly measure flu prevalence,
e.g., (20,27, 28)]. If you are 90% of the way
there, at most, you can gain that last 10%.
What is more valuable is to understand the
prevalence of flu at very local levels, which is
not practical for the CDC to widely produce,
but which, in principle, more finely granular
measures of GFT could provide. Such a finely
granular view, in turn, would provide power-
ful input into generative models of flu propa-
gation and more accurate prediction of the flu
months ahead of time (29-33).

Study the Algorithm. Twitter, Facebook,
Google, and the Internet more generally are
constantly changing because of the actions
of millions of engineers and consumers.
Researchers need a better understanding of
how these changes occur over time. Scien-
tists need to replicate findings using these
data sources across time and using other data
sources to ensure that they are observing
robust patterns and not evanescent trends. For
example, it is eminently feasible to do con-
trolled experiments with Google, e.g., looking
at how Google search results will differ based
on location and past searches (34). More gen-
erally, studying the evolution of socio-tech-
nical systems embedded in our societies is
intrinsically important and worthy of study.
The algorithms underlying Google, Twitter,
and Facebook help determine what we find
out about our health, politics, and friends.

1t’s Not Just About Size of the Data. There
is a tendency for big data research and more
traditional applied statistics to live in two
different realms—aware of each other’s
existence but generally not very trusting of
each other. Big data offer enormous possi-
bilities for understanding human interac-
tions at a societal scale, with rich spatial and
temporal dynamics, and for detecting com-
plex interactions and nonlinearities among
variables. We contend that these are the most
exciting frontiers in studying human behav-
ior. However, traditional “small data” often
offer information that is not contained (or
containable) in big data, and the very factors
that have enabled big data are enabling more
traditional data collection. The Internet has
opened the way for improving standard sur-
veys, experiments, and health reporting
(35). Instead of focusing on a “big data rev-
olution,” perhaps it is time we were focused
on an “all data revolution,” where we recog-
nize that the critical change in the world has
been innovative analytics, using data from
all traditional and new sources, and provid-
ing a deeper, clearer understanding of our
world.
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